Formulasi Inspiratif

Matematika => Aljabar Linier Elementer => Topik dimulai oleh: Albert Erros pada April 30, 2018, 03:37:31 PM

Judul: Kabar Gembira dalam Analisis Vektor
Ditulis oleh: Albert Erros pada April 30, 2018, 03:37:31 PM
Andaikan kita mendefinisikan produk skalar tripel dari 3 buah vektor $\vec{A}$, $\vec{B}$, dan $\vec{C}$, yaitu $[\vec{A},\vec{B},\vec{C}]:=\vec{A}\cdot(\vec{B}\times\vec{C})$.

Identitas vektor

\[ [\vec{A},\vec{B},\vec{C}]\vec{D} = (\vec{A}\cdot\vec{D})(\vec{B}\times\vec{C}) + (\vec{B}\cdot\vec{D})(\vec{C}\times\vec{A}) + (\vec{C}\cdot\vec{D})(\vec{A}\times\vec{B}) \]

dapat membuktikan bahwa


dengan cara mengutak-atik identitas vektor di atas tersebut.